NASA Ames Research Center — QSS Group, Inc.

Mission Simulation Facility Documentation

MSF: The Missing Manual

MSF Team

December 2002

Contents

1. Introduction 5
1.1, Remark. e 5
1.2. Typographic ConNventions. o i i it e e e e e e e 5
1.3. Naming ConventionNs 0 i e e e e e e e e e 5
1.4, ACIONYMS. . . . o o o e e e e e 5

2. MSF Concepts 7

3. FTK 8
3.1. Classesrepresenting HLAconcepts. i i i 8

3.1.1. HLAInteractionClass andHLAODbjectClass | 9
3.1.2. HLAInteractionMessage | e e 10
3.1.3. HLAODbjectinstance |. e e e e 11
3.1.4. Remote Method Callls. 12
3.2. LRCand Federate Ambassador. e 12
3.3. Helperclasses 13

4. COM 14
4.1, OVEIVIEW . . . o o e e e e s e e e e e e e e e 14
4.2. Hierarchy 14

5. How to build an MSF Federate 17
5.1. Overview of Examples. e 18
5.2. Initializihngan MSFcomponent. e 19

5.2.1. Connecting to the Simulation 20

5.2.2. Declaring the Federate’'sIntention. 20
5.3. Producing objects and updating their attributes. 21
5.4. Discovering objects and reading their attributes 22
5.5. Using O-O method calls between Federates 24

5.5.1. Calling Remote Object Methods. 24

5.5.2. Implementing Object Methads. 25
5.6. ObjectShells. e 27

A. UML Sequences Diagrams for FTK 30

B. Code of Examples

Document updated on May 15, 2003

40

1. Introduction

The goal of the Mission Simulation Facility (MSF) project is to provide a simulation platform for developers
of autonomy software. The chosen approach uses a distributed architecture where each Federate solves
a particular problem in a simulation. The various Federates are linked using a networked infrastructure
based on the High Level Architecture (HL&)[1]. In addition to providing basic mechanisms to exchange
messages and data, HLA also supports time management and Federate synchronization.

In the HLA vocabulary, an application participating in the simulation is calldek@derate and the
Federationis composed of all the Federates connected to the simulation. Federates exchange messages
(interactions) and data (objects) using the Run-Time Infrastructure (RTI).

1.1. Remark

The reader of this manual should be aware that two type of classes are discussed in the text: the HLA classes,
which form a hierarchy of classes of information that is shared among the Federates in a simulation, and the
regular C++ classes that are used for representing the HLA classes and the simulation models.

1.2. Typographic Conventions

Italics is used for emphasis for example when new items are introduced in the text or for notes that require
special attention.

HLA classes and methods and file names are rendered in monospace typdLa@bjectClass
federateAmbassorSet createBoat.cpp

1.3. Naming Conventions

HLA-based FTK classes discussed in the text are presented in mixed-case starting with a capital letter.
Instances of HLA-based FTK classes are presented in mixed-case starting generally with a lower-case
letter except for names that start with an acronym which are all in capital letters.
Class methods are represented in mixed-case starting with a lower-case letter.

1.4. Acronyms
COM Communication entities
FOM Federation Object Model

FTK Federate ToolKit

HLA High Level Architecture
LRC Local RTI Component
MSF Mission Simulation Facility
RFI RTI-Federate Interface

RTI Run-Time Infrastructure
SIM Simulation packages

UML Unified Modeling Language

umli2hla UML to HLA conversion tool

2. MSF Concepts

The MSF core architecture relies on HLA mechanisms to exchange data among the various Federates of
a simulation. HLA is a standard, specifying an interface of interaction in a distributed system. The HLA
standard is implemented in software by several vendors through a Run Time Infrastructure (RTI) software
and offers multiple mechanisms to exchange data, all based on the Publish-Subscribe scheme. The standard
also describes the various rules for Federate interactions. Available RTIs implement the HLA specification,
but leave the developer with several important tasks:

e Maintaining a local representation of the simulation (existing objects, data values, etc.) with the Local
RTI Components (LRC)

e Ensuring data type coherency across platforms (the RTI transfers only untyped, raw data)

e Ensuring that every Federate behaves correctly in the simulation. (Each Federate needs to respond to
certain request to guarantee a smooth simulation.)

To offer a consistent solution to the above problems for every Federate of the simulation, MSF provides
a communication layer on top of the HLA-RTI. This layer abstracts many of the HLA internal mechanisms
by providing an elaborate LRC. In addition, the MSF layer maintains a truly object-oriented approach to the
communication among the Federates, thus enforcing data types and consistency. Finally, most of the rules
necessary for a Federate to behave correctly in a simulation are built directly into the MSF communication
layer.

The core of the MSF communication infrastructure is the Federate ToolKit (FTK), which provides the
LRC, generic objects and messages, and rules for interacting within the simulation. The FTK is abstracted
from any domain specific simulation and can be used for a variety of HLA simulations. The communication
entities (COM) are objects and messages derived from the generic FTK classes with application specific
information that form the language of a simulation for a specific domain. The COM classes are designed in
a Unified Modeling Language (UML) editor and a class and code genamati@hlarealizes the software
implementation based on the FTK (s@kfpr details). Finally a Simulation Package (SIM) offers additional
facilities to the MSF developer to speed up the creation of simulation components.

3. FTK

The Federate ToolKit package is designed to help MSF developers integrate their components with the High
Level Architecture (HLA) framework. Details of the implementation are given in the FTK reference manual.
This chapter focuses on the high level concepts implemented by FTK.

FTK roles are summarized below.

¢ Provide a wrapper around some fundamental methods of the the RTI (like connect, leave, etc), which
offers a simplified interface to the RTI.

¢ Manage the class hierarchies (objects and interactions), handle retrieval, publication and subscription
declarations

e Offer a Local RTI Component (LRC) which maintains a list of created and discovered objects.
¢ Define a Federate Ambassador implementing the RTI calls and working closely with the LRC.

¢ Implement the most important rules to ensure the correct behavior of the federate in regard to the rest
of the simulation.

3.1. Classes representing HLA concepts

FTK defines several classes that implement the base concepts used in HLA to exchange data. TBd/Figure
on the facing page gives an overview of the relationships of these HLA implementation classes. The mapping
is defined below.

HLAInteractionClass is a class that represents an HLA Interaction

HLAInteractionMessage represents an instance of an HLA Interaction, usually referenced in FTK as a
“Message”

HLAODbjectClass is a class that represents an HLA Object

HLAODbjectinstance represents an instance of an HLA Object, usually referenced in FTK as “Instance”

The classes depicted in FiguBel on the next page offer all the necessary functionalities to handle the
corresponding HLA concepts. However, these classes are generic and the user has to derive new classe
from them to implement his specific classes (interactions, objclass, objects or messages). The automatic
generation of these classes using the “uml2hla” tool is describe?].inThe same document presents the
mapping between Communications Entities defined in UML, and the FTK based implementation classes.
The naming convention for the derived classes is described in the following example of a Rover that is
controlled by a DriveTo command.

msglnteraction for the class of interactiorDriveTolnteraction
msgMessage for the interaction instancériveTolnstance
objObjClass for the class of objectRoverObjClass

objinstance for the instance of the objedRoverinstance

<<stl_container>>
map<ftk::PARAMETER_INDEX, ftk: HANDLE>

-_parameters

HLAInteractionMessage

St | HLAODjectinstance |
I | _ N
‘ | map<string,AttributeClass*> HLAObjectInstance

\ -_attributes
+_parentClassPtr
A ‘
‘ YourGeneralMessages ‘ ———
[]
[| N
YourObjectMessages # interactionClassPtr #_objectClassPtr

— HLAObjectClass

HLAInteractionClass ‘

ObjectRootObjClass

|

1]
MethodInteraction ReturnValueObjClass

|

O 1

InteractionRootInteraction

YourGenerallnteractions ‘
[|

‘ YourObjectinteractions ‘
|
[|

Figure 3.1..0verview of the FTK Classes Representing HLA Concepts.

3.1.1. HLAlInteractionClass and HLAODbjectClass

The two FTKHLAInteractionClass andHLAODbjectClass classes implement the necessary be-
haviors to handle the HLA concept of interaction and object classes correctly. They both derive from
GenericClass which manages the creation of class hierarchies. Derived classedHidimter-
actionClass andHLAODbjectClass are used to create C++ representation of a Federation Object
Model (FOM). For each class in a FOM, a derived class fitdbAlInteractionClass andHLAODb-
jectClass is defined. This allows the programmer to use class attribute qualifiers instead of string based
qualifiers, as shown in the pseudo-code below.

I/l String based approach
vesselHandle = getClassHandle('‘Vessel'’)
speedHandle = getAttributeHandle (‘‘Vessel’’', ‘‘speed’’)

s | // Qualified approach

vesselHandle = VesselObjClass::getClassHandle ();
speedHandle = VesselObjClass:: getAttributeHandle (VesselObjClass ::SPEED)

Because the C++ classes represent HLA classes, only one single instance of each should be presentin
program. This is implemented by applying a singleton pattern to the clasSi(sgletonHolder class
documentation). The FOM hierarchy is captured by the use of the attribcieesssName and_parent-

Nameof the GenericClass so there is not need to create an inheritance hierarchidlvinterac-
tionClass andHLAODbjectClass . In fact, all the derived classes froRLAlnteractionClass
andHLAODbjectClass are at the same level, creating a flat structure.

The FTK LRC (RFI) is notified of the FOM hierarchy by registering to it each derkiedinter-
actionClass andHLAODbjectClass representing the desired FOM. The order of registration is not
important, but the hierarchy tree needs to be complete, so that fully qualified HLA names can be built by the
RFIL.

The major difference betweddLAlnteractionClass and HLAObjectClass is that the for-
mer realizes the concept of HLA parameters, while the latter realizes the concept of HLA attributes. The
HLAInteractionClass class maintains a simple list of parameter names and associated handles. The
HLAODbjectClass maintains a list of attributes. Attributes are represented byAttrgbute class
managing attribute names, handles, ownership and initialization state.

Following the HLA concepts of interactions and objects, the declaration of publish/subscribe intention
of a Federate are done class-wise for interaction and attribute-wise for objects. An example of declaration
is shown in the Sequence Diagraiill on page31l. The RTI handles the HLA declaration management
concepts, which are captured at a higher level by FTK. The Sequence DidgPaon page32 illustrates
how the declaration propagates through the Federation for Federates using FTK layer.

3.1.2. HLAlInteractionMessage

A Federate that wants to send an HLA interaction dynamically creates an instance of a class derived from
HLAInteractionMessage that represents the desired interaction. Each parameter can then be set in-
dividually via the accessor meth&dsFinally, the Federate can send the message to the Federation using
thesend method. This action has an immediate effect, which means that the appropriate call to the RTI
is done right away. ThelLAInteractionMessage encodes the parameters using the XDR convention,
and then builds the correct RTI based parameter set before sending the message.

Federates subscribing to a class of messages will receive messages that are appropriately derived fromr
HLAInteractionMessage . In this case, the message is constructed by the FTKFederateAmbassador,
which uses an object factory to create the appropriate derived cléfisfdnteractionMessage . The
parameters of the message are extracted from the RTI parameter-set and are XDR decoded. The Federate |
finally notified of the new incoming message and can read its parameters using the accessor methods. An ex-
ample showing the events taking place during a send/receive scenario is shown in the Sequencé®iagram
on page37.

Warning: The management of the received messages is currently poorly realized by RFI. The incoming
messages are simply pushed in a queue and the federate developer can pop them in order to process then
However, once a message in popped out of the queue, there is no way to re-insert (something the developel

'EachHLAInteractionClass andHLAODbjectClass contains only its local name and its parent name.

2All accessor methods derived from thit AlnteractionMessage and theHLAObjectInstance classes are automati-
cally generated by theml2hlatool

10

could want to do if he popped the message only to have a look at it). On the other end of the spectrum, if
the messages are not popped out by the federate, they will accumulate in the queue!

3.1.3. HLAODbjectIinstance

Each Federate can publish and subscribe to objects derivedHt#@bjectinstance . These objects

are the implementation of the corresponding FOM objects. The FOM hierarchy is directly mapped to the
generated C++ objects derived frath AObjectinstance , which allows a derived object to inherit from

the attributes and accessor methods of its super-class.

When a Federate registers a new instance to the Federation, it owns all the attributes of the object by
default. It can therefore update any attribute using the provided accessor methods. However, updating
an attribute of a derivetHLAODbjectinstance does not propagate it automatically to the rest of the
Federation. The natification of attribute changes to the RTI (which dispatches it to the subscribing Federates)
is only done when the Federate calls pfrecessPendings method of theRFI class. This additional
step is necessary to group and optimize the updates and to avoid possible re-entfaiat ialRT1, which
are not supported by the implementation.

Federates subscribing to at least one attribute of a class of objects will be notified of new instances
registering to the simulation. The defabfKFederateAmbassador handles the RTI callbacks of new
discoveries by creating the appropriately deritldAObjectinstance using an object factory and by
adding the object to the Federate’s LRC maintained byriRe. The creation/discovery process is described
in the Sequence Diagrafm 3 on page33. The object maintained by the RFI is a reflection of the original
object registered by the creator Federate. Attributes updates are then reflected in the local object of the
discovering Federate. The full process of object attribute update/reflection is described in the Sequence
DiagramA.5 on page35. This mode of data transfer can be referred to as pushing data: the creator Federate
updates attributes to reflect its internal state changes, and the subscribing Federates are notified of these
changes. FTK also supports a pulling mode where a subscribing Federate specifically requests an attribute
update. This scenario is illustrated in Sequence Diagkaron page36. The two modes of data transfer
can be mixed, although MSF simulations generally use the push scheme during a simulation run, and the
pull scheme when a new Federate is connecting, to ensure that it gets all the data that have been published
earlier.

If a creator Federate un-registers an instance from the Federation (it does not necessary delete it own
local copy), then all Federates having discovered this object will be notified. At this point, their LRC will
be updated and the object deleted (destroyed and removed from the local list). The delétlokQds-
jectinstance is shown in the Sequence Diagra¥ on page34. The developer should be extremely
careful when keeping his own referencestioAObjectinstance since the references can disappear by
the actions of a remote Federate. The only safe way to keep permanent refereHtégtojectin-
stance (beside deriving directly from thelLAObjectinstance) is to declare an object as a client of
the desiredHLAODbjectinstance using thelnstanceClient class. In this case the object will be
notified of object deletion.

The FTK also supports exchange of ownership between Federates for each attribute of a specific object.
The policy for the transaction is based on a priority scheme: only Federates with a higher priority for a
class of objects can take ownership of its attributes. FTK implements the following scheme for releasing

3A re-entrant can arises when a Federate receives through its Federate Ambassador a request to update attributes, and tries to
update them right away.

11

attributes: when a successful acquiring Federate releases the ownership of attributes, the ownership is au-
tomatically re-acquired by the original owner. Note that a Federate having acquired attributes will release
them automatically when it leaves the Federation.

3.1.4. Remote Method Calls

In addition to Send interactions, which are anonymous by nature, FTK supports a scheme where interactions
are linked to objects. This scheme allows the use of method calls on remote objects as easily as if the objects
were local to the program. When defining Communication Entities using UML Bder[more informa-

tion), the developer can define classes as having attributes and methods. The methods, which are mappe
to HLA interactions, are all derived from thédethodInteraction class and the associated messages

are derived from thdlethodMessage class.MethodMessage contains two additional parameters: the
handle of the destination object and the return value identifier. Carrying this information allows the FTK to
implement a remote O-O method approach for interactions. The methétlsA@bjectinstance hav-

ing a remote effect are callemmanddo differentiate them from the ones that act locally (e.g. accessor
methods, class related methods).

The Federate creating an object instance is considered the modeler of the object and will therefore
implement the Command method. Other Federates that have discovered that object can send commands t
it. The full scenario of a remote method call is described in the Sequence Didg8on page38. Because
of the networked nature of a distributed MSF simulation, the call to a command method is not blocking — it
simply returns a command identifier that can later be used to query the status of the command. The status of
a command is implemented by creatingeturnValue ” objects as shown in Sequence Diagram on
page39.

Warning: the current implementation of FTK does not clean up after the return values. A good scheme
for deciding when a return value object is no longer useful has to be put in place in order to delete the “old”
return values and avoid an explosion of instances in the simulation.

3.2. LRC and Federate Ambassador

The communication of a Federate with its Federation is realized with two interface classes: the RTI Ambas-
sador, which allows the Federate to control the Federation execution, and the Federate Ambassador, which
gives the Federation execution access to the Federate. Both classes are handled by the FTK RFI as show!
in Figurel3.2 on the next page. The RTI Ambassador is created by the RTI implementation, but it is up to
the developer of the Federate to implement the Federate Ambassador. FTK provides a Federate Ambas-
sador classKTKFederateAmbassador) that includes all the callbacks used in an MSF simulation. The
Federate Ambassador works closely with the RFI as it acts on the LRC to process new messages, object
attributes etc. Together, th&-l and theFTKFederateAmbassador classes relieve the developer from
implementing any details regarding the interaction of the Federate with the Federation.

Another benefit of using the FTK library is that all the rules of HLA are already built into the library,
so the developer does not have to worry about the many complex behaviors. The HLA rules implemented
within the RFI, the FTKFederateAmbassador and the HLA classes include among many others:

¢ Correct declaration propagation and notification

¢ Reply to attribute requests from other federates

12

¢ Provide consistency with object registration / deletion

e Manage ownership transactions

<<typedef>>
OBJECT_INSTANCE_MAP

RTlambassador
(from RTI)

\\-$_\h|aobjects A

T~ / -$_rtiAmb

W -$_interactionClasses e RFI
-$_objectClasses

T~ -$_fedAmb
| T~

+_theRF

—2\

FederateAmbassador

|
<<friend permissign>> (from RTI)

GenericClass /

|

HLAODbjectinstance HLAInteractionMessage FTKFederateAmbassador

HLAODbjectClass HLAInteractionClass

Figure 3.2.1mplementation of the LRC in FTK.

We can see in Figurd.2 that theRFI has a reference to tieTlambassador as well as one to a
FederateAmbassador . At RFI initialization, it is necessary to provide the RFI with an implementation
of the FederateAmbassador. This is normally done using the proFAtk&ederateAmbassador , but
the developer can also derive his own Federate Ambassador to meet specific purposes.

The RFI maintains two class hierarchies, one each for interactions and object classes. This allows the
RFI to build the fully HLA-qualified names from the parent names and class names, retrieve the handles
for classes, parameters, and attributes, and to do other tasks necessary for the the correct behavior of the
simulation.

TheRFI maintains the LRC, which is mainly implemented with @BJECT_INSTANCE_MAEonN-
tainer. Parallel containers are used to provide rapid access to the objects regarding their names or handles.

Note: The LRC is currently integrated in tRé=| class. However, we plan to make it a separate class to
effect a better distribution of responsibilities and to create a cleaner interface.

3.3. Helper classes

All classes composing the FTK library are described in the reference manual but some of them are briefly
presented here.

13

4. COM

4.1. Overview

The COM package contains classes that are used for data communication among participating Federates ir
an MSF Simulation. The design, creation, and code generation of these classes is describechiiiae
documentation. This chapter describes the concept and hierarchy of the classes that are included with this
MSF release.

4.2. Hierarchy

At the highest level, the library contains general entities, such as rover, locomotor, manipulator, and terrain
to support the current simulation domain, which is focused on planetary surface rover missions. At a lower
level, the user is supplied with classes that communicate data and commands related to devices. The COM
library of objects allows a user to create a variety of simulations without having to design and create his own
communication classes. The library will grow as users create different or specialized simulations.

MSFEntity
gmodel : msf:STRING

/4 %
\\\
/ \\ Terrain
\

\ latitude : msf::REAL_F
glongitude : msf:REAL_F

galtitude : msf::REAL_F
gextendX : msf::REAL_F

Robot
gstatus : msf::U_CHAR

gextendY : msf::REAL_F
gresolutionX : msf:REAL_F
Manipulator gresolutionY : msf:REAL_F

gnumberOfJoints : msf::U_INT \
gtoolLocation : msf::Vector6f \

®moveTo() \

Locomotor

gnumberOfWheels : msf::U_INT
gtelemetry : msf::Vector6f

®driveTo()
rotate()
Strans ate()
®stop()

Figure 4.1.Overview of General Entities.

14

The COM classes are divided into three major packages: General Entities, Devices, and Properties. The
separation of the properties from the devices allows modeling a scenario at different levels of fidelity and
requires the user to represent only the objects and data that are exchanged among the participating Federates.
For example, in a rover simulation that does not include a power model, it is not necessary for devices, such
as motors and instruments, to model the power consumption. Itis therefore not required to attach the Electric
property to these devices, since no other Federate would subscribe to it.

The Devices package contains actuator, sensor, detector, instrument, and battery as showrdr2Figure
all of which are found in a typical rover engaged in surface exploration. In the near future, as MSF is
being used for building simulations and executing a variety of scenarios, more specialized equipment may
be added to the library. It is our goal to provide a library that contains all devices that are most often used
in simulations in the current domain to support those users of MSF who do not want to learn the details of
creating their own communication classes.

MSFEntity
(from General Entities)
Battery %
gmaximumCapacity : msf::REAL_F Device Sensor
gcurrentCapacity : msf::REAL_F —_| gstatus : msf::U_CHAR — P =
gnominalVoltage : msf::REAL_F > <J———— ereading : msf:REAL_F
gcurrentVoltage : msf::REAL_F ®power()
— _
/ ~—
Instrument
Actuator Detector gdimension : msf:U_CHAR
@oear : msf:REAL_F gdetected : msf::BOOLEAN
\
Spectrometer
T ®takeSpectrum()

CtriMotor

grealPosition : msf::REAL_F
gcompletion : msf::REAL_F

SpecialtyDetector

Camera

position : msf::Vector3f
gutility : msfINTEGER

BhfieldOfViewH : msf::REAL_F
&fieldOfViewV : msf:REAL_F

®start() otype : msf:STRING
#stop()

®takelmage()

Figure 4.2.0verview of Devices.

The third package contains properties that can be attached to any communication entity. Entities that
don’t have properties attached to them are only represented as concepts in a simulation. For example, a
trajectory generator may not have a physical representation in a simulation so there is no need to represent
that information in the entity. On the other hand, a camera may be visualized in a viewer and its mass may
be considered by the dynamics engine to compute the rover’s pose. If the user wants to model the camera’s
power consumption, he can further enhance the camera model by attaching the Electrical property to it.

15

16

MSFEntity
(from General Entities)

Property

Physical

Electric

gparentframe : msf::STRING
gvisible : msf::BOOLEAN
glocalPose : msf::Vector6f
gworldPose : msf::Vector6f

Lighting

@load : msf:REAL_F

illumination : msf::REAL_F

gvoltage : msf::REAL_F

Figure 4.3.0verview of Properties.

5. How to build an MSF Federate

Figure5.1on the following page shows the main phases in the lifetime of an MSF Federate:
e Initialize the RTI-Federate Interface (RFI):

— Define the Federation name and Federation File to be used
— Specify the Federate Ambassador to be used

— Declare the Federation class structure

Connect to the simulation

Retrieve all the handles that were dynamically defined by the RTI

Declare what data the Federate will publish and to what data it will subscribe

Start the simulation loop
¢ Terminate at the end of the simulation or after the simulation loop returns.

Each MSF Federate is responsible for modeling a particular subset of the entire simulation. In the
simulation loop a Federate generates its new states according to external inputs and then communicates
the new states to other Federates in the simulation. Each Federate also services any requests that it may
have received from other Federates in the simulation. Some Federates (e.g. a data logger) participate only
passively in a simulation. These type of Federates consume data but do not produce information that needs
to be shared with other Federates. However, the data they produce is useful for other actors, such as a 3D
viewer displaying information to a human user.

The creation and deletion of objects can take place at any time in the simulation loop, or even before the
simulation loop begins. The only prerequisite for creating objects or sending messages is that the Federate
declare to the RTI the classes of the objects it wants to publish and the classes of the messages it wants to
send. Before a Federate can declare publications, the class handles need to be retrieved.

It should be noted that it is possible to change the Federate’s Publications/Subscriptions at'any time
The class structure can also be extended after the normal initialization phase, but then the Federates have to
retrieve the class handles by querying the RTI after any addition in the class structure. The RFI interface
allows dynamic modification of the class structure, but this method is not recommended since the reference
to the the class structure, from the RTI's point of view, is the Federation file, which is static during a

1This is implemented but requires more testing before it should be used.

17

. Start Component

Simulation Loop
Initialize Create Process Component
RFI Objects ‘ Actions ‘
RTI::tick()
B Process Simulation =717
Connect to og'e & ‘ Actions ‘
Simulation Jects
Get
Handles Quit the
Simulation
eclare Publis
& Subscribe (/.\ End Program
N/

Figure 5.1.0verview of MSF Component Activities.

simulation run. In future versions of MSF, the declaration of the class structure will be autdmated
embedded in an application library.

5.1. Overview of Examples

To illustrate the creation of MSF Federates, several simple examples will be studied. The full source code
for these examples can be found in ApperiBixn page40. Because MSF uses a distributed scheme, at
least two Federates are necessary to show the communication across the simulation. Therefore, almost all
the examples come in pairs of two Federates.

A first scenario uses thereateBoat.cpp and listenBoat.cpp programs. The first program
simply creates a new Sailboat instance, and then updates its attributes: heading, speed and heel. The secor
program discovers any Sailboat in the simulation and prints its current attributes.

A second scenario uses the same object class in two others progradsiBoat.cpp andcon-
trolBoat.cpp . ThemodelBoat.cpp file describes a model of a boat that does nothing except print
the commands it receives from another boat, in this case the commands issued by the program described ir
controlBoat.cpp

The two following sections (Sectidb.2 on the facing page and SectibtR on page21) are based on

2Because we chose a strongly “typed” data structure for representing the MSF Federates, the class structure is embedded into the
class names of several classes including the Object, Interaction, and Attribute classes. It is therefore not possible to build the
class structure at run-time by reading it from the Federation file. The chosen approach detects naming problems at compile
time.

18

20

25

the createBoat.cpp program. The next section (Sectid on page22) uses code samples coming
from thelistenBoat.cpp program. Finally, SectioB.5 on page24 uses themodelBoat.cpp and
controlBoat.cpp programs.

5.2. Initializing an MSF component

The code in listingb.1 begins with the statement declaring an RFI (Run-Time-Infrastructure — Federate —
Interface). Only one RFI can exist per Federate and the RFI can be accessed from anywhere in the code
by static methods. The RFI maintains an LRC and will do the necessary calls to the RTI regarding the
Federate request. To allow the RTI to execute requests to the Federate, a Federate Ambassador needs to
be implemented, which is done on the next line. In most cases, an MSF Federate developer can use the
default MSF Federate AmbassadbiTKFederateAmbassador). The FTKFederateAmbassador

implements the basic Federate Ambassador methods used in an MSF simulation. If the Federate devel-
oper has a specific need, he can derive the FTKFederateAmbassador to implement additional methods, or
change the behavior of already implemented methods. The Federate Ambassador is assigned to the RFI
with federateAmbassadorSet . This step is necessary, so that the RFI can inform the RTI which Fed-
erate Ambassador to use during the connection sequence. In addition, the Federate declares the name of the
Federation it wants to join and the filename of the Federation file (FED file) it relies on with the commands
(FederationNameSet andfederationFileSet).

RFI theRFI;
FTKFederateAmbassadertheFA = new FTKFederateAmbassador ();
theRFI.federateAmbassadorSet (theFA);

theRFI.federationNameSet ("MSFEST");
theRFI.federationFileSet("navigation.fed");

HLAODbjectClass& vesselClass = SingletonHolder<VesselObjClass >::Instance ();
HLAObjectClass& sailingBoatClass = SingletonHolder<SailboatObjClass >::Instance ();
theRFl.registerObjectClass(vesselClass);

theRFl.registerObjectClass(sailingBoatClass);

Listing 5.1: Initialization

The next step in the Federate initialization is to declare the Class structure. Although a standard HLA
simulation uses a Federation File that can be read at runtime, MSF uses or more strongly “typed” approach,
and therefore every Object or Interaction Class that will be used in the simulation (and defined in the Feder-
ation File) is declared as a class (seeuhd2hladocumentation). The simple example described here uses
the same class ctructure as the one presented imtfizhladocumentation and is represented in FigbL
on the next page. The example program only creates objects of class Sailboat, but it is also necessary to
declare the parent classes of Sailboat to ensure that the RFI can build a fully qualified HLAfoasech
class. References to classes composing the class structure are defined using the Singleton pattern. These
classes are registered to the RFI, which builds the class structure from it. Note that the order of registration
is not important (VesselClass could have been registered after SailboatClass), but registering all the par-
ent classes of the classes used by the Federate is critical (e.g. VesselObjClass needs to be registered since
SailboatObjClass is a child of it).

3In the simulation, the fully qualified name of Sailboat will BjectRoot.Vessel.Sailboat

19

30

35

Vessel

&sspeed : msf:REAL_F
&sheading : msf:INTEGER

%dropAnchor(anchor : msf::STRING, chainLength : msf::REAL_F)
#weighAnchors()

A\
/\

Sailboat
&sheel : msf:INTEGER

#setSail(sail : msf:INTEGER)

Figure 5.2.Class Structure.

5.2.1. Connecting to the Simulation

After the necessary initialization, the MSF Federate can be connected to the simulation with the unique call
joinFederation . Since multiple Federations (simulations) can concurrently exist in an HLA simula-
tion, the MSF Federate connects to the particular Federation execution that has been named with the call,
FederationNameSet . The methogoinFederation first checks if a Federation execution with the

given name already exists. If it does already exist, the Federate simply joins it, otherwise the RFI instructs
the RTI to create a Federation execution with the given name and then joins the newly created Federation
execution.

int wait = Output::wait("Trying,to_Join_the_Federation");
int error = theRFl.joinFederation ();
if (error) {
Output:: fatal ("An,Error_has occured when, joining:_stop_the_program!\n");

}

else {
Output::ready(wait);

}

Listing 5.2: Connection

5.2.2. Declaring the Federate’s Intention

After the MSF Federate has connected to the Federation execution (simulation) without errors, it can de-
clare its intentions: what classes of objects and interaétithesFederate will produce and to what classes

the Federate wants to subscribe. In fact, HLA allows the publication and subscription to be defined at a
finer level for object classes since the publish/subscribe status of every object attribute can be individually
set. For this reason, each FHLAODbjectClass maintains the publish and subscribe status of each at-
tribute (class wise, not instance wise). By default, ed@bAObjectClass publishes and subscribes to

all attributes but the status can be set globally wvgittblishAll |, subscribeAll , unPublishAll

“Interactions will be treated later in this chapter

20

40

45

andunSubscribeAll . The publish/subscribe status can also be set for each attribute individually with
setPublish andsetSubscribe

wait = Output:: wait("Gettingall_handles");
theRFI.getHandles ();
Output:: ready (wait);

wait = Output::wait("Publishingfederates classes");
sailingBoatClass . publishAll ();
sailingBoatClass.unSubscribeAll ();
sailingBoatClass.PublishSubscribe ();

Output:: ready (wait);

Listing 5.3: Declaring Publications and Subscriptions

When the correct publish/subscribe policy for each object class is obtained, the MSF Federate can de-
clare its intention to the RTI (and thus to the rest of the simulation). This declaration is achieved by calling
thePublishSubscribe method of the correspondindl AObjectClass . Only at this point is the RTI
notified of the Federate’s intention. The other methods for setting the publish/subscribe states of classes
have no direct effect on the RTI: they only change the local state of these classes. Therefore, if the publish/-
subscribe policy of a class is changed later in the program, thelubkshSubscribe method has to
be called again to notify the RTI of the changes. It should also be noted that although the MSF developer
has to register the full class structure to the RFI to completely define the full class names, he only needs to
declare publication to the RTI for the classes of objects that the Federate will produce (i.e. in the present
example, it is not necessary to decldfesselClass.PublishSubscribe since this Federate will
never create objects of clagesselObjClass).

5.3. Producing objects and updating their attributes

If an MSF Federate publishes a given object class, it can create instances of this class. As shown in List-
ing'5.4 on the following page, the first step is to create the instance Gwllboatinstance) and the

second step is to register the instance to the RédigterObjectinstance). Only this latter call

actually notifies the RTI (and thus the rest of the simulation) of the creation of a new instance in the simu-
lation. Once an object instance has been registered to the RFI, the developer transfers the ownership to the
RFI. Although the object has been allocated dynamically, it should not be deleted widklédte oper-

ator! In fact, once an object has been registered to the RTI, another Federate may take ownership of it and
even delete it. Therefore, the user has to let the RFI manage the registered objects. The RFI will delete the
registered objects at program termination, or remove them earlier if another Federate with the right privilege
is requesting it. However, the MSF developer can m&athoveObjectinstance if he wants to remove

the object from the Federation and from the RFI fis&inally, it should be noted that the object instance’s
name can be individually set by the calhafmeSet). If the developer does not set the name of the object
before registering it, a name will be automatically assigned to the instance (the RFI makes the appropriate
call to let the RTI define the name). Once the name has been assigned to an instance, it is valid throughout

5There is another callinRegisterObjectinstance , but it should be used only by thtl AObjectinstance itself. It
will be interesting see what happens if a user uses this call, which in this case should return the object itself and allow the user
to delete the object. FinallyemoveObjectinstance should NOT delete the object from the RFl lists, (as it does now) if
the object is not owned: this is a bug in the current implementation since it corrupts the LRC!

21

60

65

70

55

the lifetime of the object. The name of each instance has to be unique among all the objects in the simula-
tion. This is guaranteed when the RTI assigns a name automatically, but if the user tries to register an object
with a name that already exist, the registration will fail.

wait = Output::wait("Creatingone_ Sailboat");
Sailboatinstance boat = new Sailboatlinstance ();
boat—>nameSet("my_best_boat");
theRFIl.registerObjectinstance (boat);
Output::ready(wait);

Listing 5.4: Creating One Object

The simulation loop of the sample program presented in this section simply updates the attributes of
the sailboat. This is shown in Listiril5: the attributeSet methods are changing the local values of
the object instance, but these changes are not propagated to the simulation. Only when the Federate calls
processPendings will the RFI notify the RTI of all the new states of its local objects. Itis very important
to understand that all the calls doneldbhAObjectinstance are only changing the LRC maintained by
the RFI and only when callingrocessPendings will the other Federates in the simulation receive the
updates with the new states from the RTI.

for (int n=0; n<100; n++) {
boat—>headingSet(270);
boat—>speedSet (n%20);
boat—>heelSet ((nt)((n—-50)/10));
RFl:: processPendings ();
msSleep (1000);

Listing 5.5: Simulation Loop

5.4. Discovering objects and reading their attributes

Federates that are interested in a specific class of objects have to subscribe at least to one of the class at
tributes in order to be notified when a new object instance is created. This is shown in [bi§tinigere the
Federate declares its intention to subscribe to all attributes of Sailboat. The next step is to instruct the RFI
what to do when objects of class Sailboat are discovered. The RFI uses an object factory to create object
instances of a specific type without having prior knowledge of these classesediberCreateln-

stance method tells the RFI to associate the function caleateSailboat in our case) with a class

of objects.

wait = Output::wait("Publishingfederates,classes");
sailingBoatClass.unPublishAll ();
sailingBoatClass.subscribeAll ();
sailingBoatClass.PublishSubscribe ();

Output::ready (wait);

theRFl.registerCreatelnstance (sailingBoatClass.classHandleGet (), createSailboat));

Listing 5.6: Subscribing to Objects

Listing 5.7 on the next page shows a simple example of the factory method used in the example. The
object factory creation function has to return an object of tfh&Objectinstance and its arguments

22

20

70

75

are the handle of the object to be created and the class handle of the object. In this simple example the
factory function increments an internal counter and creates &Sadtywoatinstance , Which it returns.
Generally, these factory functions don’t do much more than what is shown here. Another possible task
would be requesting some attribute updates for this object.

HLAObjectinstances createSailboat (ftk ::HANDLE objHandle , ftk ::HANDLE classHandle)
{
nb_discovered boats++;
the_last_boat =new Sailboatinstance (objHandle , classHandle);
return the_last_boat;

Listing 5.7: Defining the Object Factory

Because the Federate describedistenBoat.cpp subscribes to all attributes of Sailboat, it will
be notified (reflection) each time an attribute is updated by the Federate owner of the corresponding at-
tribute. The Federate getting the reflection can choose to be explicitly triggered on an attribute reflection by
implementing theeflect method of the derivetHLAObjectinstance . However, the default FTK-
FederateAmbassador will set the correct attribute value of the specific object when it receives a reflection
notification. Therefore, the developer should implement a reflect method only if there is a need for the
program to respond specifically to the value change. Otherwise, the Federate can simply get the attribute
value at any time with th&et method of each attribute, which returns the latest update of the value. The
listenBoat example uses this scheme to print all attribute values of the last discovered boat.

Listing 5.8 shows how the status printing is done inside the simulation loop. The programs prints the
retrieved information usin@Get methods, then “ticks” and goes to sleep for one second. In this case, the
Federate is completely passive (it does not affect the simulation state), so there is no neegnw call
cessPendings . However, to be notified of the changes in the simulation, the Federate has to let the
Federate Ambassador do the appropriate calls. This is achieved by ticking thecRFI fnethod). Each
time the Federate caltck |, the RFl lets its registered Federate Ambassador process all the pending calls it
gets from the simulation. In our case, the Federate Ambassador reflects the attribute changes of the Sailboat
objects.

while (theRFI.RFI::getNumberOfObjects() > 0) {
cout << "Boat," << the_last_boat>nameGet()
<< " _/state; heading=" << the_last_boat>headingGet()
<< " [speed=" << the_last_boatspeedGet()
<< "_l_heel=" << the_last_boat>heelGet() << endl;
RFI::tick ();
msSleep (1000);

Listing 5.8: Listening to Attributes Updates

Note that the simulation loop afreateBoat (Listing 5.5 on the preceding page did not tick at all
because this Federate is only creating objects and generating updates. However, this practice is strongly
discouraged for more complex simulations. Without ticking, the Federate never gives its Federate Ambas-
sador a chance to process simulation requests and the Federates do not interact correctly in the simulation.
In this particular casesreateBoat would not answer to explicit requests for attribute updates. This is not
critical here since the Federate already continuously updates all the attributes. However, imagine a situation
where a first Federate updates attributes only when a change in its internal state occurs. A second Federate
joining the simulation at a later time may depend on some of object’s attributes, but will not be able to get

23

135

140

them until the first Federate decides to update them (which could be a long time if this particular attribute
state does not change often). If the first Federate had been ticked, it could have updated the attribute that the
second Federate requested and the simulation would have executed correctly.

5.5. Using O-O method calls between Federates

The examples shown in the previous sections demonstrate how to use the classic accessor methods for objec
attributes (valueSet — valueGet), but in this case between Federates that are connected via a communicatior
network. This scheme is implemented on top of the HLA Object concept. FTK goes one step further by pro-
viding general O-O method calls (across the network) on instances that reside on a different Federate. This
distributed calling feature is based on the HLA interaction concept, but additional mechanisms are embedded
in FTK to turn HLA's “anonymous” interactions into MSF object method calls. The two following sections

will explain how to use this capability through two additional example progranesielBoat.cpp and
controlBoat.cpp . The program listed imodelBoat.cpp creates a collection of Sailboat objects,

and then simply waits for commands sent to these objects. When it receives a boat command, it prints
the command to show the program’s behavior. On the other sideptiteolBoat program discovers

the boats that are created in the simulation and sends commands to these boats with a method call. After
each method call, the program waits to receive an acknowledgment that the command was received by the
program that models the boats.

5.5.1. Calling Remote Object Methods

Calling a method on a remote object is straightforward as shown in Li&tig If the program has a
reference on aliscovere object instance, it can simply call the method attached to this object with the
necessary arguments. In response to the method call, the object instance builds the appropriate messag
(HLA interaction) and sends it to the simulation. The message carries the handle of the object as well
as a command identifier. The object handle is used by the receiving Federate to route the message to
the designated object. The command identifier is uniquely defined (among all Federates) by the sending
Federate, and serves two purposes: 1) the receiving Federate needs this command identifier to create ¢
ReturnValue objectinstance, and 2) the sending Federate can query its RFI for the status of this particular
call. A remote method call on adLAObjectinstance is not blocking, so the method returns as soon

as the message is sent. In addition,HIlIAObjectinstance remote method calls return the command
identifier, which has been automatically generated so that it can be used to query the command status.

for (int i=0; i<nb_boats; i++) {
sprintf(name, "boat_%d", i);
HLAObjectinstances obj = theRFI.getObjectlnstance (name);

Sailboatinstance boat = dynamic_cast<Sailboatinstance>(obj);
if (boat) {

sprintf(anchor, "A %c" ,char(i+65));
cout << "Drop,Anchor_ " << anchor << " with_"

<< (i+1)%10 << "_meter of_chain " << " _of_boat," << name << endl|;
cmdID = boat->dropAnchor(string (anchor), float)(i+1)%10);

5This is currently not enforced by FTK itself: it is possible to call remote method on object created by the Federate itself. We
should change this behavior by inserting a test in the code generation process.

24

30

35

40

45

50

control_wait_for_acknowledgment(cmdID); H

Listing 5.9: Calling Object Methods

It should be noted that the remote method scheme relies on HLA interactions, which implies that the
Federate needs to declare its intention to publish the interaction supporting the remote method call. In our
exampleSailboatSetSaillnteraction needs to be declared if tletSail method is used (see
Listing'B.4 on page45 for details on this).

The sending Federate can check the status of the remote method call by querying the REtRéth
turnValue . Before theReturnValue instance has been created by the receiving FedagatBe-
turnValue will return -1 . Once theReturnValue has been created by the receiving Federate, and
discovered by the sending FederagetReturnValue will return the value of the attributestate of
theReturnValue instance. Sample code showing how to wait for return values is shown in L&tlfig
The example includes a time-out loop, since there is no guarantee that the receiving Federate will create the
appropriateReturnValue . Again, it is necessary to “tick” the RFI inside this waiting loop, since it is the
only way for the RTI to notify the RFI of changes in the simulation state.

bool control_wait_for_acknowledgment(msf::U LONG cmdID)
{
bool acknowledge =false;
long sec, msec;
Time timer;

for (int t=0; t<1000 && !'acknowledge; t++) {
RFI::tick ();
if (—1!= RFl::getReturnValue(cmdID)) {
acknowledge =true;

}
msSleep (5);

if (acknowledge) {
timer.elapsed(sec, msec);
cout << " —> acknowledgmentin "
<< sec << "s,and." << msec << "ms" << endl;
return true ;
}
else {
cout << "Time,out_for_acknowledgment!" << endl;

return false;

Listing 5.10: Waiting for Acknowledgment

5.5.2. Implementing Object Methods

On the receiving side (i.e. the Federate modeling the actual instance), some additional work is required to
handle the remote method calls. In addition to declaring the Federate’s intention to subscribe to the neces-
sary interactions (see Listii13 on paged3for details), the Federate has to initialize the interaction factory.
This scheme works exactly the same way as the object factory explained in &edtionpage22: the Fed-

erate registers to the RFI how to create interaction messages of various classes usgtrCre-

ateMessage method. An example of a message factory function is shown in LiStihty When receiving

25

a message of clasailboatSetSail , the function simply creates @ailboatSetSailMessage
which is added automatically to the list of pending messages in the RFI.

HLAInteractionMessage createSetSail (ftk ::HANDLE classHandle)
{

return new SailboatSetSailMessage (classHandle);

2 |}

Listing 5.11: Message Factory

Of course, the receiving Federate also has to implement the setSail method requested by the sending
Federate. For that purpose, one has to derive a class from the base instance class and implement the require
remote method calls. The code in ListiBd 2illustrates one of these implementations. The function simply
creates the appropriate return value and prints out a small message showing the arguments received.

class MyBoat : public Sailboatlinstance

{

35 public :

MyBoat(const charx name) {
nameSet (name);

b

40 void setSail(SailboatSetSailMessagemsg) {
RFl:: createReturnValue (msgcommandldentifierGet ());
cout << "MyBoat," << nameGet()
<< " _is_commandedto_set sail " << msg—>sailGet() << " I" << endl;

Listing 5.12: Implementation of the Methods

Because thevlyBoat class implements the remote methods declare8ditboatinstance to
achieve the expected behavior, the Federate has to create objects biyfgpat rather than the generic
Sailboatlnstance as described in Listing.12 It should be understood that although this Federate
registers object instances of typlyBoat to the RFI, in actuality instances of claSailboatinstance
are broadcast to the simulation and MgBoat class implementation exists only locally to this specific
Federate.

for (int i=0; i<nb_boats; i++) {
115 char name[32];
sprintf(name, "boat_%d", i);

MyBoatx boat = new MyBoat(name);
theRFIl.registerObjectinstance (boat);

Listing 5.13: Creating Object Instance Implementing the Remote Method Calls

Finally, the receiving/modeling Federate can enter into its simulation loop as depicted in biddran
the next page. In this simulation loop, the Federate simply executdickhe andprocessPendings
commands, which ensure that:

e The Federate receives remote method calls (through interaction message)

26

125

e The RFI processes the local pending actions, like registering to the RTI a newly cRetted-
Value

for (int t=0; t<3000; t++) {
RFI:: processPendings ();
RFI::tick ();
I/l sleep for 100 milliseconds
msSleep (100);

Listing 5.14: Simulation Loop of the Model

5.6. Object Shells

The publish/subscribe scheme for objects is a satisfactory solution in all situations where a Federate needs
to be notified about all the objects of a given class. For example, a viewer would subscribe to all graphical
objects and display them indiscriminately of their particular identity. There are however many situations
where a component needs to get or set the data of a specific object. For example, a trajectory generator that
computes the wheel movement of a rover, when it receives a command “Drive to this position”, needs to
command the individual wheels of a particular rover, not just any wheel belonging to a rover. Because the
models of the rover wheels are computed by another component (e.g. the dynamic simulator), they are not
created by the trajectory generator. Therefore, the trajectory generator needs to discover the correct wheels
it wants to control. A Federate could perform this task by trying to identify each newly discovered object
and comparing it to the Federate’s internal list of objects that it wants to control. FTK provides a facility to
implement this in a more generic way with a concept termed Object Shells, or simply Shell.

A Shell is an object that has a reference to a discovered object. A Shell is initially empty and contains
only the name of the object it is waiting for. By registering the Shell to the RFI, it will start monitoring any
new discovery of objects having the same name as the Shell. When the RFI is notified of a new object in
the simulation, it automatically tries to match it to the list of registered Shells. If a name matches, it fills the
Shell with the reference to the discovered object, making this Shell usable by the component. If the object
is removed from the simulation, the Shell is notified and emptied. but will continue to be active and will be
filled again on object re-discovery or emptied on object removal, as long as it stays registered to the RFI. To
make the Shell concept even more usefudjscovery Policy is attached to everghell instructing
the RFI to perform additional actions upon Shell discovery, including:

¢ Requesting updates for a set of attributes (necessary if the component needs some attribute value of
the object right at the initialization phase)

¢ Requesting ownership for a set of attributes (necessary if the component wants to take control of these
attributes)

The Shell becomes “ready” only when all the following conditions are met:
e The object instance with the correct name has been discovered
¢ The attribute update requests have been satisfied

e The attribute ownership requests have been satisfied

27

The Shell concept, which drastically decreases the amount of code required by the simulation compo-
nent developer, is implemented with the help of the templatized dl@gShell and the policy class
DiscoverPolicy . Listing/5.15 illustrates how to use them. The fully documented listing of this pro-
gram, discoverSushis , which is to be used together wittteateSushis , is given in ListingB.5
on paged8. The first lines of the example simply declare two different policies. The makiPolicy instanct
requires an attribute update fBIECES and the nigiriPolicy instant requires attribute ownershiPaiR.

Two Shells are then built with these policies. The first Shell will wait for an object named “kapa” and the
second Shell will wait for an object identified with the name “maguro”. Finally, the two Shells are registered
to the RFI in the last lines of the example.

DiscoverPolicy makiPolicy;
makiPolicy .addUpdateRequest(makiClass. getAttributeHandle (msf:: MakiObjClass :: PIEGES))

DiscoverPolicy nigiriPolicy;
nigiriPolicy .addOwnershipRequest(

nigiriClass . getAttributeHandle (msf:: NigiriObjClass :: PAIR));
TObjShell<msf:: Makilnstance > makiShell ("kapa", makiPolicy);
TObjShell<msf:: Nigirilnstance > nigiriShell ("maguro", nigiriPolicy);

rfi.registerObjShell(&makiShell);
rfi.registerObjShell(&nigiriShell);

Listing 5.15: Creating and Registering Shell

28

Bibliography

[1] Defense Modeling and Simulation Office. RTI 1.3-Next Generation Programmer’s Guide
URL=http://www.dmso.mil/public/transition/hla/.

[2] Lorenzo Fluckiger. Generating HLA based communication classes form a UML descripfiohSA
Ames Research Center, 2002. URL=http://is.arc.nasa.gov/MSF...

[3] F. Kuhl, R. Weatherly, and J. Dahman@reating Computer Simulations Systems: An Introduction to
the High Level ArchitecturePrentice Hall, 2000.

29

A. UML Sequences Diagrams for FTK

30

Federate A

reglstefObjectCIass(HLAObJect

LRC A : RFI

RTlamb A :
RTlambassador

Sailboat Class :

SetSail Class :

HLAODbjectClass

HLAInteractionClass

registerinte actionCIass(HLAIthrgptLonClass&r

e

getHandles(void)

-

I
|
|
|
Classé&)

For all the classes above
~—|the final object/interaction
| classes A publish or
subscribe to

getObjectClassHandle(constichar *)

getAttributeHandle(const char*, ObjethIassHandIe)

7

getlntera:tionCIassHandIe(conFt char *)

getParameterHandle(const char *, InteractionClassHandle)

gl

T

h

setSubscrlbe(ftk :ATTRIBUTE I\NDEX bool)

————1=_
I
|

setPublish(ftk: AATTRIBUTE, _INDEX, bool)_ -

j%

PubIlshSubscrlbe(VDld)

g

class publication

|
|
L
Declaration of objectﬁ/ - ‘

|
For every attribute the

_|federate publish (publishAll

_|and unPublishAll can also
be used)

|
subscriheObjectClassAttributes(ObjectClassHandle, const AttributeHandleSet&, éoolean)

[

pubI|shObjectCIass§ObjectCIassHand|e const AttributeHandleSet&)

I

|
setPublish(bool)
|

|
setSubgcribe(bool)

PublishSybscribe(void)

L
!

Declaration of
interaction class
publication

I
I
I
I
I
I
|
|
I
I
I
|
I
I
I
I
|
I
I
I
4{
I
I
I
|
I
I
I
I
I
I
I
I
|
I
|

|
subscribelnteractionClass(InteractionClassHandle, Boolean)

4

publishInteractionClass(In‘keractionCIassHandle)

Figure A.1.:Declaration Management.

31

- — — —

(a|pueHsse|

(31 01 Buiguosqns s| arelapay
J3Y10 ou JI) sse|d 1eoq|res o}
| 19quIsgns aiow ou S| aIay}

(o|pueHssE

(pron)aquasansysiiand

]

(uesjoog

(proA)livaquasagnsun |

leoqjres

Sse|o Jo s108(qo 031 alow
Aue aquoasgns jou saop
11 Salejoap g alelspa-

.

_osm.aovmmm_osm.aom...T_bw%w%

(a|pueHsse|

—_—— — — — — —]

22lqo)sse|D199lqoioquonensibaydols

(asres)iassiaduosgnssey

- j Feyl payljou si 'y srelapad
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Sse|o Jeoq|res
01 S18qIoSqNS SI dIaY}
__q Teu) paynou si v a1esopad

|

[219S3|PUBHSINGURY IS

G_oameamg:m__m__nu}

(pron)ivaquasans

s109[qo |[e 01 aquosqgns
11 Salejoap g alelspa-

leoqjres
SSE| Jo sanqune

uoo .m_uchwmm_OSmE%mmSQ_E<wmm_06m.5Twn:omg:m

H1lg0)sse08lqoI04uolensIBayLElS

(ena1assiaquosqnssey

sse|o Jo s10algo ysignd
[IIM 31 SaJejdap v alelapa

(®19S8|pUBHAINGUNY|1SUOD ‘BpueHSSE|DI0B[qQ)sselD1alqoystignd
|
|

JEOUIES | |(pion)aquosgnsysiiang

| (pom)ivusignd

g oreiepad

-dquelly

Jopessequie Ly

o -V quedg3d

Jopessequivarelapadyid

-V quelly

Jopessequie g

SSe[D18IqOVTH -

V oreispag

ion.

Declaration Propagation and Notificat

Figure A.2.

32

|
|
|
|
|
|
|
|
|
(x@2uBISU08IqOVTH ‘«Jeyd 1SU0D)s||aySHo8yd

j\

Il
Amc_:wg,EmrmwmvEm:

,
,
|
,
,
,
,
,
”
m
L
,

L

(3TANVH:3M "FTANVH:S)e0uRIsUReOqIeS
, /
/

Ly, (F1ANVH: D ‘TTANVH:l)20uBISU SR80
|/ ,

a|pueH1dalgo pue
3|pUBHSSE|D YIMm aoueisul
areudoldde ay a1ea1d 03
A1010®) 193[C0 S) sasn |4y

(x Jeyo 1suod .m_ucm_._mmvm_oﬁm_no ‘alpueHd8lgO)eourISUOBIqOIBA0ISIP

|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x ouEIsupdalqOVTH)aduBISUIOBIgOPPE ,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

(xeyo 1suod »m_ULMIwwm_O%mEOvmocSm upoalgosessibal

e —

A@oium\mum_ucmzwmm_u

I
| /
| /
, /
L =
|14 8yro1ide8lqo| | —
ay JasiBal 0] ajpuey SSe[d [QIELENT -V ,
L pue aweu ay) $196 |4y

| (4 @dueIsupoalqoVTH)doURISUOBlgOIaISsIBa
| | iy
| | _

A —
W . Ai&,hﬁwcoovmucﬁwc:moﬂ,n__mm
| pue awreu syl BuiAyoads
| 109[qo ue |real)

33

Figure A.3.:0Object Creation.

3oueIsupeoqes

-1 ¥eoqires

144 - g 041

TopesSequiyareIspadyl 1|

- d queddd

bS] -V quelly

Jopessequiel Ly

149 -V Od1

- T yeoqires

ERVESNEES

V oeiepag

(31anv

—

f))eoueisulareald

(p1on)fenowayAynou

E

I (Yoouesupeoqies-

psiBaiun

(31dNVH:>)e0uEISUNIBIgOaADWS)

(xeyo uwc&, ‘alpueHd8lqO)souURISUIBIgOBAOWS)

P - —

(42 15U02 ‘BpuRHIAl
|

(——

ploA)uonelapawol

O)adurisualgoaislp

=2

HeAowal

b — —

|

| |

| | |

| | |

| | | |

| | | |

| | | |

| | | |

| | | |

, , , , (ITANVH: p)esueIsupoalgo.asiBayun

| | | |

| | | | —

, , , , (p1on)ferowsyAyou

| | | |

| | | |

| | | | ()aouelsupeoq|es~ |

| | | | |

W W W W " (31aNVH:>)a0URSUdB[gOdA0WRL

| | | | |

, , , , , | (ploAjesipuey |

| | | | | | |

| | | | | | |

| | | | | | |
‘SoueIsupeoqes Jopessequiyarerspady1d Jopessequie| Ly ‘soueisupeoqes

T.TIeoqres =Fagodl Taqueg3d fiRs] TV queird IEE 2o h] TTIeoqies V arerspad

Figure A.4..Object Deletion.

34

F— — —

; !

T
,m:oz<:“v_&msn_h:ﬁom_m_

|

(@IQNYH:)sINGUIYPaZ|

EYG)

EY6)

(ITIGNVH:)SINgUNYPazZI

(u1 pauBisun |',Jey2 1Suod ‘JTANVH: MH)ejedaingunvias
I

(F1aNvH:sp)eouRISURDRlAOIeD
, |

«+Ieyd 1suod Jmumw__wn_wj_m\/L_U:@Iwu:n:Cd\ 1SU02 ‘B|pueH: Uw—novm®3_0>wu:Q_\E(chw_

:

(proa)yon

(+ey2 15U0d “RI18SIrRdaN[EASIPUBHAINGLNY|1SUOD ‘B|pUBHId3[gO)saNRASINGLIYaTepdn
I
, —

(U1 ppybisun “g.teyd ‘ITANVH|>H)ereaaingunyiah

(umoys 1ou st 3ISYIT1IH
10 NOILISINODV ‘1S3NDIY Buissaooud) (— —
S31vadn ay: Ajuo Buissadsoid oureusadss i I_H

(plon)sarepdnBuipupssasoid

oy1u
saouelsul e 1o

—
-

(reyy paubisun)sbuipuadssapoid

(reyo um:m_mcsvmmz_ucwn_mmmooa

S

(4393 LNI:swhasbuIpesy

SOUBISUNEOTIES 7

TOPESSEqUIVaTeIspaISIId
Tgauea3d

TopesSEqUEILY
TV quelry

3ou
_ T(v)yeoqes

7 gowespes 7 7 =HETgogl 7 7 [Ec) 7 7 [EEEEa) 7 7 v orepag 7

35

Attribute Update.

Figure A.5.

(=P19S8|pUBHEINGLNY jSUOD .m_u%zu«m_@v%U%T_m>2=g_£<%_>oa

.arepdn ainguny,, weibelp ay; ul reys aouanbas awes
3y ynm aoed axes aingue auy jo arepdn auy ‘Juiod siy woi4
} !

!
|
,
k
,
!
|

i o

] oz<I”v_sy%a:wsg_:;\m:mrc W / /

| (reyp vm:m_wcuvmm:_u:mn_mmwuoi

sBuipuadssaoid Jo |[ed
1xau ay} Je arepdn pajsanbai
ay} ssao0.d IM v a1esapa

N

pajsanbai s| ajepdn aingune

(91953IpPUBHPINGLNY 1SUOD ‘BJpUBHIIRIGO)arepdNaNfeASINgLIYI0BIqOISaNbaI
|
|

\(IJ//((umoys 10U ISYITVIY
bayBuIpUay d T = .
(pron)sisanbayBuip! 201 10 NOILISINOOY ‘F1vadn)
paquasap sl S1S3INO3Y

Jo ssadoud ayy Aluo

—

(reyo paubisun)sbuipuadssadoid

ue Jeuy) payou s| v aresapad
T

(reyo _um:m_w::m,mm_‘_u\:\mn_wmwmmo_\m — = _

arepdn aingupe ue jsanbal

sBuipuadssasoid areniul
g aresapad uaym auop Ajuo
sl 1sanbai ay} jo Buissaooid ayL

Al@noiidxa g aresapadq

_p-

T

T T |
m_._oz<1” v_smw:cww_msezﬁmsm:c |
| | |

|

|

Jopessequel Ly

Jouersuneoqes
g orerepag (g)reoqres Hg 9291 g queiry

TOPESSeqUIValeIapady 14 Jouersuneoqes
TV quivpad ~(v) reoqres

o

[ESEAAer=h]

v aerspad

:Attribute Request.

Figure A.6.

36

S

(P1on)iu

biofou. T — — —

w3l
Aue AjnoN

(- of

10019€181U |/ TH) USHJE.

ajujananb

|

]

(S IredanfeAa|pueHia)

(371aNVH:u)abessaIoyouydo.

s|pueHsse|d yum abessaw

oreudoidde ay ayeald o}
Ki019e} 199[00 S) sasn |4y

(«feyo 18

Ieed s o 1SU0D)SSII0.
——

ananb |4y 3y
ul abessa\ ysnd

1]

—

QI9SSaA

abessapy
apodaqg

STANVH: i)aBessanare

4o

(2101,) soeq|Ied a1y

11 31 19| resspady

< ebessan ansoey

T
upd quwmh_mn_mz_m>w_ucm::m~®r:m‘_m& suod ,O_UCMImmm_UCO_GmhmHC_v:J_uum‘_OHC_Ozwumh

(x/eyo 1suod 9

|
,
,
,
,
[
,
,
,
[
,
,
,
,

< @u epoou3

” (*s1u1 paubi

5

I e

aSIleden[eAs|pUBH.alaWeled 15U0D ‘s|pUBHSSEIOUORORIBIU|)LoNORIBIUIPUSS

ISUN “9,1eyd ‘ITANVHE:P)eIeaIsBWe IR d)oh

ﬂ (PIOA)19D3|pUBHSSE[D
,

< abessaN puss

‘paulap 10U a1oMm siajawesed awos
JI puas aq jou ued abessay ay) ‘uonedldde
[eal & ul ‘1anamoH ‘siaiawered omy
Jo uoniuyap ayy Ajuo moys weibelp siy) :210N

‘s19)awered abessay auyaq
T

abessapy
Adw3 maN areald

- (p1on)puss

IvIRsWhesyBuaTul

———d

I»Iflfhwr/
y

|(ONIMLS:suIss I0YUR

[

3

Basic Interaction.

— - qummm\w\,_ﬂvzoc<no_o_mmmv>

7 goepad 7

7 [EESH

a0d1 7

Jopessequiyarerspady1d
Tg quea3d

1 7

A

TV qurelrd

Jopessequie|[y

TONIeISIUIOUIUYA0IQIoSSIA

(V) ssep

BSSONIOUOUYAOIQOSSOA

- (Japuas Bsw

7 v a1eiopad 7

Figure A.7.

37

F—— — — — — -

i i i
, , ,
, , ,
, , ,
[[[
[[[
[[[
[[[
, , ,
, , ,
, , , ,
== , , ,
ﬁwmmmmw_\fc;u: i ajassan)ioyouydoip 7 7 7
[/ [— [[
| / | (! abessaw au) yoIym | |
01108[qo ay) anaLey
, / , , ,
/| - | 1
'SSB|0 30UBISU[9SSA / (F1GNVH:>p)20ueISURORIGOY
ay) Buinuap Aq pajuswaldwi aq / -abessaw uaDAnou sy Jaye sjuana
0} SBY poyIdW SI L [[ealewOINe / | . auy Ajuo smoys Emm‘_@% siyLuomoesdyal| || >|
9][e9 SI POYIBLU 1981109 Y| oiseg, weibelp ui se awes ay)
. pair poy: : u. , / 7 7 (promuanoAmou an pue 6 JI3YnuapIpUBIWOd
[[[[,
! — : ! ,
| ‘108[q0 | | L
uonBUNS3P B} :JUD SH S3YNOU
| pue abessaw ay) passasoid | | (ebessawl puas auyy Wouy) ,uonoeiaiul (ploA)puas
pue panidal sey g aresapad oiseg,, weibelp ay) ut se aures ay) st
| | | @ouanbas Buipuas ay) ‘uiod siy) woi4
[[[[[, ,
| | | | | | | — [TvEswhesubuaureyd
19s ale sigjpwesed
, , , , , , abessaw auL
, , , , , ,
[[[[[[[
| | | | | | 195 ale Jaynuap!
| | | | | | PpUBLIWOD By} SE [|aM SB
7 7 7 7 7 7 uoneUNSap 8y} Jo ajpuByY 8y :
| | | | | | | ﬁwdz,\x.v_samwscm_ 1931q01sp|
, , ! ! ! ! ! I S——
| | | | | | | [EEEBE) 17 ()abessaioyouydoiqassan|
< abessaw v 7
, , , , , , L
, , , , , , ,
, , , , , —
| | | | | puBLIWOD ay) | _ —— T
Bey o) pajelauab si uonesapa \EL{WT SW ‘'ONIY LS ysw)ioyduydoip
| | | | | By Buowe saynuapl enbiun v - | |
108[qo auo jo
| | | | | | | poylaw e [ea v aresapas | |
, , , , , , , [, ,
, , , , , , , , , ,
Bl EENTE] 5UOUYA0IA[SSSIA
g aelspag T(parean) [assan F9-god1 Tgaqueg3d 3 39 v od1 T(Japuas) bsw (PaIaA02SIP) [9SSaA D EEE]

on.

:Method Interact

Figure A.8.

38

weibelp siy) uo pajyuasaidal
jou asre ,sbuipuadssasoid,
ue o1, Jo S9|9Ad 8y} 810N

aNeA uin|y ayl Jo arels
ay) Aianb ueo v ajelapaq
[/
|/
/
/\

b — — —

-

}

(weibelp orepdn anguny,, 99s) L
angune ,81e1S, aN[eA uIMay ay) Jo uonebedold

19[g0
aNjeA uinvy e ajeald
‘uondasal abessaw uQ

Jaljuap|puewiwod ayl si
N[eA uinial ay} Jo sweu ay
[N
N
A

| (Bums::pis)iasaweu

)aouelsuleNeAUINS

—
—

T
|
,
,
L

(neosrers
|
|
|

M [

(1INu uINIBJ 19K PaIBA0ISIP JOU Hi) JaNIUBP!
SHANM BN[eA UINia) 8} 9ASLIB) Ued v a)elapad

e ”

7 I
|

, [

H

F1QNYH:DY _m_._oz<t,ﬁ“v_ﬁm@mﬁ:_%_gsﬁmm
~

I >~ I

| (ONOT N:ysw)dnfeAuInayiab

3[g0., 99S) anfeA uindy ayl Jo A18A0dsIg

|
|
|
(weibelp uoneaid W
|
|
|

(weibelp ,uonoelalu| poyldN, 99s)
puas UONYBIBIUI Ul PaWIOjSUEI) S [[ed POYIBIA

\

| |

, ,

, ,

| | _ T

, , (47 VIY:PSW “ONIYLSHsw)Iguouydoip
, ,

, ,

, ,

,

gorespad

QJUB)ISU|[SSSaA

T(pareaid) [8SSeA

T(a1eaId) uInjal

144 © 9 gd1

144 © VvV Od1

a4

QJUBISU|[SSSaA -

vV orespag

:Return Value.

Figure A.9.

39

10

15

20

25

30

35

40

B. Code of Examples

Listing B.1: Create and Update — createBoat.cpp

/1 111 WARNING !!!
/Il Please never add or remove any line from this file without updating the
/I msf.tex documentation accordingly (Lorenzo)

#include "rfi.h"
#include "ftkfederateambassador.h"

#include "VesselObjClass.h"
#include "SailboatObjClass.h"
#include "Sailboatlnstance.h"

using namespacemsf;

int main (unsigned int argc, char xargv[])
{
RFI theRFI;
FTKFederateAmbassadertheFA = new FTKFederateAmbassador ();
theRFI.federateAmbassadorSet (theFA);

theRFI.federationNameSet ("MSFEST");
theRFI.federationFileSet("navigation.fed");

HLAObjectClass& vesselClass = SingletonHolder<VesselObjClass >::Instance ();

HLAObjectClass& sailingBoatClass = SingletonHolder<SailboatObjClass >::Instance ()|;

theRFIl.registerObjectClass(vesselClass);
theRFIl.registerObjectClass (sailingBoatClass);

int wait = Output::wait("Trying ,to_Join_the_Federation");
int error = theRFl.joinFederation ();
if (error) {
Output:: fatal ("An,Error_has occured when,joining:_ stop_the_program!\n");

}

else {
Output::ready(wait);

}

wait = Output:: wait("Getting all_handles");
theRFI.getHandles ();
Output:: ready (wait);

wait = Output::wait("Publishingfederates classes");

sailingBoatClass . publishAll ();
sailingBoatClass.unSubscribeAll ();

40

45

50

55

60

65

70

75

80

10

15

sailingBoatClass.PublishSubscribe ();
Output::ready (wait);

wait = Output:: wait("Wait,for_subscribersof_Sailboat");

for (int t=0; t<100 && !sailingBoatClass.hasSubscribersGet (); t++) {
RFI::tick ();
RFI:: processPendings ();
msSleep (1000);

if (sailingBoatClass.hasSubscribersGet()) {
Output::ready(wait);

wait = Output::wait("Creatingone Sailboat");
Sailboatinstance boat = new Sailboatlinstance ();
boat—>nameSet("my_best_boat");
theRFIl.registerObjectinstance (boat);
Output::ready(wait);

wait = Output:: wait("Updatingboat attributes");
for (int n=0; n<100; n++) {
boat—>headingSet(270);
boat—>speedSet (n%20);
boat—>heelSet ((nt)((n—-50)/10));
RFl:: processPendings ();
msSleep (1000);

}
Output::ready(wait);
}
else {
Output::error ("TimeOut!\n");
return —1;
}
return O;
}
Listing B.2: Discover and Reflect — listenBoat.cpp
[/ 111 WARNING !!!

/Il Please never add or remove any line from this file without updating the
/I msf.tex documentation accordingly (Lorenzo)

#include "rfi.h"
#include "ftkfederateambassador.h"

#include "VesselObjClass.h"
#include "SailboatObjClass.h"
#include "Sailboatlnstance .h"

using namespacemsf;

int nb_discovered_boats = 0;
Sailboatinstance the_last_boat = 0;

41

20

25

30

35

40

45

50

55

60

65

70

HLAObjectinstance: createSailboat (ftk ::HANDLE objHandle , ftk ::HANDLE classHandle)
{
nb_discovered boats++;
the_last_boat =new Sailboatinstance (objHandle , classHandle);
return the_last_boat;

}

int main (unsigned int argc, char xargv([])
{
RFI theRFI;
FTKFederateAmbassadertheFA = new FTKFederateAmbassador ();
theRFI.federateAmbassadorSet (theFA);

theRFI.federationNameSet ("MSFEST");
theRFI.federationFileSet("navigation.fed");

HLAODbjectClass& vesselClass = SingletonHolder<VesselObjClass >::Instance ();
HLAObjectClass& sailingBoatClass = SingletonHolder<SailboatObjClass >::Instance ();
theRFIl.registerObjectClass(vesselClass);

theRFl.registerObjectClass(sailingBoatClass);

int wait = OQutput::wait("Trying,to_Join_the Federation");
int error = theRFIl.joinFederation ();
if (error) {
Output:: fatal ("An,Error_as_occured when,joining:_ stop_the_program!\n");

}

else {
Output::ready(wait);

}

wait = Output::wait("Gettingall_handles");
theRFI.getHandles ();
Output :: ready (wait);

wait = Output::wait("Publishingfederates classes");
sailingBoatClass.unPublishAll ();
sailingBoatClass.subscribeAll ();
sailingBoatClass.PublishSubscribe ();

Output :: ready (wait);

theRFl.registerCreatelnstance (sailingBoatClass.classHandleGet(), createSailboat

wait = Output:: wait("Wait,for_one boat");

for (int t=0; t<100 && nb_discovered_boats <1; t++) {
RFI::tick ();
msSleep (1000);

}

if (nb_discovered_boats > 0) {
Output ::ready (wait);

while (theRFI.RFI::getNumberOfObjects() > 0) {
cout << "Boat," << the_last_boat>nameGet()
<< " _/state; heading=" << the_last_boat>headingGet ()
<< " _l_speed=" << the_last_boatspeedGet()

42

75

80

85

10

15

20

25

30

35

<< " /., heel=" << the_last_boat>heelGet() << endl;
RFI:: tick ();
msSleep (1000);

}

}

else {
Output::error("TimeOut!\n");
return —1;

}

return O;

Listing B.3: Model a Boat Responding to Method Calls — modelBoat.cpp

/111 WARNING !!!
I/l Please never add or remove any line from this file without updating the
/Il msf.tex documentation accordingly (Lorenzo)

#include "rfi.h"
#include "ftkfederateambassador.h"

#include "VesselDropAnchorMessage.h"
#include "VesselWeighAnchorsMessage.h"
#include "SailboatSetSailMessage .h"
#include "Sailboatinstance .h"

#include "classes_hierarchy.h"

#include <stdio.h> // sprintf ...

HLAInteractionMessage createSetSail (ftk ::HANDLE classHandle)
{

}

return new SailboatSetSailMessage(classHandle);

HLAInteractionMessage createDropAnchor (ftk ::HANDLE classHandle)
{

}

HLAInteractionMessage createWeighAnchors (ftk ::HANDLE classHandle)
{

}

return new VesselDropAnchorMessage (classHandle);

return new VesselWeighAnchorsMessage (classHandle);

class MyBoat : public Sailboatlinstance
{
public :
MyBoat(const charx name) {
nameSet (name);

b

43

40

45

50

55

60

65

70

75

80

85

90

void setSail(SailboatSetSailMessagemsg) {
RFl:: createReturnValue (msgcommandldentifierGet ());
cout << "MyBoat," << nameGet()
<< " _/is_commandedto_set sail_* << msg—>sailGet() << " " << endl;

}

void weighAnchors(VesselWeighAnchorsMessagensg) {
RFl:: createReturnValue (msgcommandldentifierGet ());
cout << "MyBoat," << nameGet()
<< " is_commandedto_weigh_anchors,!" << endl;

}

void dropAnchor(VesselDropAnchorMessagensg) {
RFl:: createReturnValue (msgcommandldentifierGet ());
cout << "MyBoat," << nameGet|()
<< "_,is_commandedto_drop_anchor," << msg->anchorGet ()
<< "_with_" << msg->chainLengthGet() << "of_chain!" << endl;

b

int main (unsigned int argc, char xargv([])

{

if (argc < 2) {
cerr << "Usage;" << argv[0] << "_number_of_boats" << endl;
exit(1);

}

int nb_boats = atoi(argv[1l]);

RFI theRFI;
FTKFederateAmbassadertheFA = new FTKFederateAmbassador ();
theRFI.federateAmbassadorSet (theFA);

theRFI.federationNameSet ("MSFEST");
theRFI.federationFileSet("navigation.fed");

int wait = Output::wait("Trying,to_Join_the_ Federation");
int error = theRFl.joinFederation ();
if (error) {
Output:: fatal ("An,Error_as_occured when,joining:_stop_the_program!\n");

}

else {
Output::ready(wait);

}

wait = Output:: wait("Getting all_handles");
buildClassesHierarchy ();
theRFI.getHandles ();

Output :: ready (wait);

wait = Output::wait("Publishingfederates classes");

sailingBoatClass>publishAll ();
sailingBoatClass>unSubscribeAll ();

44

95

100

110

115

120

125

130

10

sailingBoatClass>PublishSubscribe ();

dropAnchorinteractior>PublishSubscribe ();
weighAnchorsinteractior>PublishSubscribe ();
setSaillnteraction>PublishSubscribe ();

HLAObjectClass& returnClass = SingletonHolder <ReturnValueObjClass >::Instance ();
returnClass . PublishSubscribe ();

theRFl.registerCreateMessage (dropAnchorinteractionlassHandleGet (), createDropAn
theRFl.registerCreateMessage (weighAnchorsinteractimolassHandleGet (), createWeigh
theRFl.registerCreateMessage (setSaillnteractiorlassHandleGet (), createSetSail);

Output::ready (wait);

char str[128];
sprintf(str, "Creating%d_boats", nb_boats);
wait = Output::wait(str);

for (int i=0; i<nb_boats; i++) {
char name[32];
sprintf(name, "boat_%d", i);
MyBoat* boat = new MyBoat(name);
theRFIl.registerObjectinstance (boat);

}
Output:: ready (wait);

for (int t=0; t<3000; t++) {
RFI:: processPendings ();
RFI::tick ();
/I sleep for 100 milliseconds
msSleep (100);

}

cout << "Done." << endl;

ghor);
Anchors);

return O;
}
Listing B.4: Control a Boat Using Method Calls — controlBoat.cpp
/1 111 WARNING !!!
/Il Please never add or remove any line from this file without updating the
/I msf.tex documentation accordingly (Lorenzo)

#include "rfi.h"
#include "ftkfederateambassador.h"

#include "Sailboatinstance .h"
#include "ReturnValuelnstance.h"

#include "classes_hierarchy.h"

#include <stdio.h> // sprintf ...

45

15

20

25

30

35

40

45

50

55

60

65

using namespacemsf;

int count_boats ()

{
static ftk ::HANDLE boatHandle =
(SingletonHolder <SailboatObjClass >::Instance ()). classHandleGet ();
int n =0;
HLAODbjectlnstances obj = RFIl:: getFirstObject ();
while (obj) {
if (obj—>classHandleGet() == boatHandle) n++;
obj = RFl::getNextObject();
}
return n;
}
bool control_wait_for_acknowledgment(msf::U LONG cmdID)
{
bool acknowledge =false;
long sec, msec;
Time timer;
for (int t=0; t<1000 && 'acknowledge; t++) {
RFI::tick ();
if (—1!'= RFIl::getReturnValue(cmdID)) {
acknowledge =true;
}
msSleep (5);
}
if (acknowledge) {
timer.elapsed(sec, msec);
cout << " _—> acknowledgmentin_"
<< sec << "sand," << msec << "ms" << endl;
return true ;
}
else {
cout << "Time,out_for_acknowledgment!" << endl;
return false;
}
}

HLAObjectinstances createBoat(ftk ::HANDLE objHandle , ftk ::HANDLE classHandle)
{

}

HLAObjectinstance createReturn (ftk ::HANDLE objHandle , ftk ::HANDLE classHandle)
{

}

return new Sailboatlinstance (objHandle, classHandle);

return new ReturnValuelnstance (objHandle, classHandle);
int main (unsigned int argc, char xargv][])

{

if (argc <2){

46

70

75

80

85

90

95

100

105

110

115

120

cerr << "Usage;" << argv[0] << "_number_of_boats" << endl;
exit(1);
}

int nb_boats = atoi(argv[l]);

RFI theRFI;
FTKFederateAmbassadertheFA = new FTKFederateAmbassador ();
theRFI.federateAmbassadorSet (theFA);

theRFI.federationNameSet ("MSFEST");
theRFI.federationFileSet("navigation.fed");

int wait = OQutput::wait("Trying,to_Join_the Federation");
int error = theRFIl.joinFederation ();
if (error) {
Output:: fatal ("An,Error_as_occured when,joining:_ stop_the_program!\n");

}
else {

Output::ready (wait);
}

wait = Output::wait("Gettingall_handles");
buildClassesHierarchy ();
theRFI.getHandles ();

Output::ready (wait);

wait = Output::wait("Publishingfederates classes");
sailingBoatClass>unPublishAll ();
sailingBoatClass>subscribeAll ();
sailingBoatClass>PublishSubscribe ();

dropAnchorinteractior>PublishSubscribe ();
weighAnchorsinteractior>PublishSubscribe ();
setSaillnteraction>PublishSubscribe ();

HLAObjectClass& returnClass = SingletonHolder <ReturnValueObjClass >::Instance ();

returnClass . PublishSubscribe ();

theRFl.registerCreatelnstance (sailingBoatClasslassHandleGet(), createBoat);
theRFl.registerCreatelnstance (returnClass.classHandleGet (), createReturn);

Output::ready (wait);

char str[128];
sprintf(str, "Waiting for_%d_boats", nb_boats);
wait = Output::wait(str);

for (int t=0; t<1000 && count_boats()<nb_boats; t++) {
RFI:: processPendings ();
RFI::tick ();
I/l sleep for 100 milliseconds
msSleep (100);

47

125

130

135

140

145

150

155

160

165

10

if (count_boats() == nb_boats) {
Output::ready(wait);

cout << "Now,set, sails..." << endl;

char name[32];
char anchor[32];
msf::U LONG cmdID;

for (int i=0; i<nb_boats; i++) {
sprintf(name, "boat_%d", i);
HLAObjectinstances obj = theRFIl.getObjectlnstance (name);
Sailboatinstance boat = dynamic_cast<Sailboatinstance>(obj);
if (boat) {

sprintf(anchor, "A %c" ,char(i+65));
cout << "Drop,Anchor_" << anchor << " with_"

<< (i+1)%10 << "_meter,of_chain " << " _of_boat " << name << endl;

cmdID = boat->dropAnchor(string (anchor), float)(i+1)%10);
control_wait_for_acknowledgment(cmdID);

cout << "Weigh ,Anchors," << " _of_boat," << name << endl;
cmdID = boat>weighAnchors ();
control_wait_for_acknowledgment(cmdID);

cout << "Set,sail_" << i << "_of_boat " << name << endl;

cmdID = boat>setSail (i);
control_wait_for_acknowledgment(cmdID);

}

cout << "Done." << endl;

}
else {
Output::error("Timegout: not_enough boats!\n");
Output::error("Terminatingnow.\n");
}
return O;
}
Listing B.5: Discovering Specific Objects Using Shells — discoverSushi.cpp
/|l test program— discoverSushis.cpp
/Il Lorenzo Fluckiger— August 2001
/Il This example shows the usage of TODbjShell which implements the concept
/1 of Shells. A Shell is an Object which listen to the simulation to
/Il discover a HLAObjectinstance with agiven name, and request attribute
/I and/or ownership of attributes on discovery. The Shell becomes ready
/' only when the instance has been discovered, the requested attributes
/l have been updated and/or acquisitions acquired.
Il

48

15

20

25

30

35

40

a5

50

55

60

65

/1 This example work in pair with the createSushis program.

I/l This federate create two shells, one requiring an attribute update
/!l and this other requiring an attribute acquisition. The program

/!l displays the status of the shells.

#include "FTK/rfi.h"
#include "FTK/ftkfederateambassador.h"

#include "SushiObjClass.h"
#include "MakiObjClass.h"
#include "NigiriObjClass.h"

#include "Makilnstance.h"
#include "Nigirilnstance .h"

#include "FTK/discoverpolicy.h"
#include "FTK/tobjshell.h"

/I define how to create Nigiri Instances
HLAObjectinstance createNigiri(ftk ::HANDLE objHandle , ftk ::HANDLE classHandle)

{
}

return new msf:: Nigirilnstance (objHandle , classHandle);

// define how to create Maki Instances
HLAObjectinstance createMaki(ftk ::HANDLE objHandle , ftk ::HANDLE classHandle)

{
}

return new msf:: Makilnstance (objHandle , classHandle);

int main (unsigned int argc, char xargv][])

{

if (argc < 2) {
cerr << "Usage." << endl;
cerr << argv|[0] << " time_alive(in,seconds)" << endl;
exit(1);

[

}

int seconds = atoi(argv[1]);
I ftk ::Debug::debuglLevelSet(ftk ::Debug::DBG_BOMBASTIC);

I/l Create a RT+Federate-Interface (it could be static or dynamic object)
RFI rfi;

I/l Create a Federate Ambassador: it has to be a dynamic object since we
/Il pass the pointer to the RFI, which will take care of deleting at

// exit. In most of the cases, the default FTKFederateAmbassador can
I/ be used.

FTKFederateAmbassadoffa = new FTKFederateAmbassador ();

/!l Assign the Federate Ambassador to the RFI
rfi.federateAmbassadorSet(fa);

/I Define the Federation Name to wich this federate will participate
rfi.federationNameSet("MSF");

49

70

75

80

85

90

95

100

105

110

115

120

50

/I Define the name of the federation file describing the federation
rfi.federationFileSet("sushis.fed");

I/l Create Singletons of the Object Classes which will be used by this federate
HLAObjectClass& sushiClass = SingletonHolder <msf:: SushiObjClass >::Instance ();
HLAODbjectClass& makiClass = SingletonHolder <msf:: MakiObjClass >:: Instance ();
HLAObjectClass& nigiriClass = SingletonHolder<msf:: NigiriObjClass >::Instance ();

/l Build the Object Class hierarchy by registering the classes to the
I/l RFI. Only the classes needed by this federate have to be register
// to the RFI, However, all the classes above them are also required in
/!l order for the RFI to build the full class hierarchy. For example

I/l this federate will only deal with Makis and Nigiris , but it is

/I necessary to also register the Sushi class from which Nigiri and
/! Maki are derived. However, the order of declaration is not

/!l important.

rfi.registerObjectClass (makiClass);
rfi.registerObjectClass(nigiriClass);
rfi.registerObjectClass(sushiClass);

/I Tell this federate to join the federation
if (rfi.joinFederation()) {

exit(1);
}

I/l Retrieve all the handles for Object Classes, Interaciton Classes,
/!l Attributes and Parameters
rfi.getHandles ();

/!l Declare that this federate will publish and subscribe to Maki and

/Il Nigiri Classes.

// By default the each class has all its attributes set to publish and
/!l subscribe: unPublishAll could have been used for example to restrict
I/l this federate to only listen , and not create instances.
makiClass.PublishSubscribe ();

nigiriClass.PublishSubscribe ();

/I Define the object factory: how to create object instances in

/Il function of class handle

rfi.registerCreatelnstance (makiClass.classHandleGet (), createMaki);
rfi.registerCreatelnstance (nigiriClass.classHandleGet(), createNigiri);

I/l Create a Policy for the discovery of Maki: for each new Maki

I/l discovered , this federate would like to get an update of the

/] attribute "pieces".

DiscoverPolicy makiPolicy;

makiPolicy .addUpdateRequest(makiClass. getAttributeHandle (msf:: MakiObjClass :: PIEC

I/l Create a Policy for the discovery of Nigir: for each new Nigiri

/l discovered , this federate would like to take ownership of the

/] attribute "pair". Note that a policy can be defined for more than

/!l one attribute and can combine update and ownership requests.

/' Warning: the object representing a policy has to exist during the all
/Il time of the simulation: RFI use it for its shell management.
DiscoverPolicy nigiriPolicy;

ES))

125

130

135

140

145

150

155

160

165

170

175

nigiriPolicy.addOwnershipRequest(nigiriClass.getAttributeHandle (msf:: NigiriObjCla

I/l Now declare two object instance shells: this shell are characterized
/1 by a type of object and a name identifying the object the federate
/! would like to discover.
/I The shell could be static or dynamic object: its is up to the federate develo
/!l to handle this objects properly
TObjShell<msf:: Makilnstance > makiShell ("kapa", makiPolicy);
TObjShell<msf:: Nigirilnstance ® nigiriShell =
new TObjShell<msf:: Nigirilnstance >("maguro", nigiriPolicy);

/I The created shell are registerd to the RFI in order for it to manage them
Il regarding the events of discovery , update, acquisition.
rfi.registerObjShell(&makiShell);

rfi.registerObjShell(nigiriShell);

int newStatus;
int makiStatus =—1;
int nigiriStatus =-1;

/!l Enter in the simulation loop
for (int t=0; t<seconds10; t++) {

newStatus = makiShell.getStatus ();
if (newStatus != makiStatus) {
if (newStatus == GenericObjShell::READY) {
/I The Shell is ready: the instance has been discovered
/!l and an update for the attribute "pieces" has been
/I received. This federate can the safely display it
msf:: Makilnstances obj = makiShell.instancePtr ();
cout << "Maki,lnstance [" << obj—>nameGet()
<< "]_READY: " << obj—>piecesGet() << endl;

if (newStatus == GenericObjShell ::EMPTY) {
cout << "Maki_Shell_is_EMPTY." << endl;

if (newStatus == GenericObjShell ::NOT_INIT) {
cout << "Maki_Shell_has instance but_attributes,are_not_initialized.

<< en

}

makiStatus = newStatus;

}

newStatus = nigiriShelt>getStatus ();
if (newStatus != nigiriStatus) {
if (newStatus == GenericObjShell ::READY) {
I/l The Shell is ready: the instance has been discovered
/I and ownership of "pair" acquired. This federate can
/1 then update the pair attribute!
msf:: Nigirilnstancex obj = nigiriShell—>instancePtr ();
obj—>pairSet{rue);
cout << "Nigiri_Instance [" << obj—>nameGet|()
<< "]_READY:_setting_ the_pair_value_ to_true." << endl;

if (newStatus == GenericObjShell ::EMPTY) {
cout << "Nigiri_Shell_ is_EMPTY." << endl;

51

55 :: PAIR));

per

180

185

190

}
if (newStatus == GenericObjShell ::NOT_OWNED) {
cout << "Nigiri_Shell has,instance but_attributes,are_ not_owned." << endl;

}

nigiriStatus = newStatus;

/I Process all the pendings this federate has

RFI:: processPendings ();

// Let a chance to the FederateAmbassador to do its callbacks
RFI::tick ();

I/l Go to sleep for 0.1 second to let the CPU do other work
msf:: msSleep (100);

}
delete(nigiriShell);

return O;

52

